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Abstract

Principal component analysis (PCA) is an e,ective method of linear dimensional reduction.
Because of its simplicity in theory and implementation, it is often used for analyses in various
disciplines. However, because of its linearity, PCA is not always suitable, and has redundancy in
expressing data. To overcome this problem, some nonlinear PCA methods have been proposed.
However, most of these methods have drawbacks, such that the number of principal components
must be predetermined, and also the order of the generated principal components is not explicitly
given. In this paper, we propose a nonlinear PCA algorithm that nonlinearly transforms data into
principal components, and at the same time, preserving the order of the principal components,
and we also propose a hierarchical neural network model to perform the algorithm. Moreover, our
method does not need to know the number of principal components in advance. The e,ectiveness
of the proposed model will be shown through experiments.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the 6eld of data analysis, it is important to reduce the dimensionality of data,
because it will help to understand data and decreases the computational cost. As a
method of dimensionality reduction, principal component analysis (PCA) [5] is often
used in various areas such as pattern recognition and image processing [2,9].
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PCA is an orthogonal transformation of a coordinate system in which we describe
data. A basis of the objective coordinate system e?ciently represents data distributed
on a linear hyper plane as the coordinate value that is called a principal component.
However, when n-dimensional data are distributed on a m (¡n)-dimensional nonlinear
manifold in a n-dimensional Euclidean space, more than the m dimensionality is re-
quired to describe the data in PCA which makes the dimensionality reduction ine?cient.
In order to solve these problems, some methods of nonlinear principal component

analysis (NLPCA) have been developed [1,3,7]. These methods can be classi6ed into
three categories. One is the application of a sandglass-type multi-layered perceptron
(MLP) proposed by Irie and Kawato [6]. The other method is based of a partial
linear approximation by Hastie et al.[4]. In these methods, the number of principal
components has to be speci6ed in advance. Unfortunately, these methods do not provide
a way for deciding the number of principal components aside from ine?cient trial
and error. Another drawback of these methods is, even after the adequate number of
principal component is given, they do not provide a parameter that corresponds to
the eigenvalue in the conventional PCA, consequently, the ratio of contribution of the
respective principal component cannot be explicitly determined. These drawbacks will
limit the use of these methods in real world problems.
The third method is Kernel PCA recently proposed by SchEolkopf [10]. Kernel PCA is

a method that executes the linear PCA algorithm for the image of input data mapped
by a nonlinear mapping function. Consequently, the method constructs the ordered
principal components. However, the adequate way to determine the nonlinear mapping
function for a given data set is not known. Moreover, the method has to solve an
eigen-equation for a covariance matrix of the image of data in order to obtain an eigen
base. The method also requires calculations of kernel functions between an objective
data and all training data to calculate a principal component score.
In this paper, we propose a novel method of nonlinear principal component analysis

that preserves the order of principal components based on their ratio of contributions
[8]. Moreover, our method does not need to know the number of principal components
in advance. In the proposed method, an array of neural networks are trained to build
a set of nonlinear functions that map an input vector to its corresponding vector in
the principal component space. The proposed model also has the ability to reconstruct
the high dimensional data from its low dimensional representation in the principal
component space. These functions are automatically adjusted in a training process.
We also discuss the property of these functions by analyzing the experimental results.
Section 2 of this paper describes the formulations of the proposed nonlinear PCA.
Section 3 demonstrates the numerical experiments. In Section 4, we discuss the property
of the proposed method. The conclusion and future studies are also given.

2. The formulation of nonlinear PCA

2.1. Extension of PCA to nonlinear PCA

Consider a random variable x∈Rn of E[x]=0. In PCA, the feature (principal compo-
nent) vector y∈Rm (m6 n) is an orthogonal transformation of data x,
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described by

y=W Tx (1)

= (eT1x; e
T
2x; · · · ; eTmx)T; (2)

where columns of W are orthonormal bases {ei}i=1; :::;m that form an m-dimensional
linear subspace L.
The reconstructed vector x̂∈Rn from y is given as

x̂=Wy (3)

=
m∑

i=0

ei(eTi x): (4)

{ei}i=1; :::;m are considered to minimize

E = E[‖x − x̂‖2]:
The minimization is equivalent to the maximization of the variance of y [1].
In PCA, the mapping from the data space to the feature space is linear. The reverse

mapping is also linear. We call the former a linear extraction function and the latter a
linear reconstruction function.
The previously mentioned conventional PCA shows the best performance when the

data x are distributed on an m-dimensional hyper plane. When the data are distributed
on an m-dimensional nonlinear manifold embedded in an n-dimensional Euclidean space
such as a curved hyper surface, the nonlinear PCA to provide nonlinear mapping
functions should be introduced for non-redundant dimensionality reduction in order to
represent the data with a curvilinear coordinate system.
We de6ne the nonlinear extraction function from data x onto the feature vector y as

y= �(x); �∈ Se; (5)

and a nonlinear reconstruction function from y onto the reconstructed vector x̂ as

x̂=  (y);  ∈ Sr ; (6)

where Se and Sr are the sets of nonlinear functions. The data nonlinearly correspond to
the principal components through the nonlinear extraction function and the nonlinear
reconstruction function.
Our problem is to minimize the mean square reconstruction error:

E = E[‖x − x̂‖2] (7)

= E[‖x −  (�(x))‖2]: (8)

When we 6nd the optimal  ; and �, we can e?ciently describe the data with fewer
principal components than that of PCA.
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2.2. The order of nonlinear principal components

In PCA, a reconstruction function is a linear combination of the bases. The bases
{ei}i=1; :::;m are obtained from the minimization of the mean square reconstruction error
under the constraint that they are normalized ‖ei‖ = 1.

After the bases were obtained, we generate the reconstruction function from a linear
combination of the bases. We can design the number to combine the bases for a
speci6c purpose, such as the high contribution ratio, the low cost of memory and the
best recognition rate. Since the bases are combined in the order of signi6cance, the
description e?ciency is maximized for the number of principal components to be used.
In our method, we introduce nonlinear reconstruction functions that map a vector in

the principal component space into the original input space as follows:

x̂1 =  1(y1); (9)

x̂2 =  2(y1; y2); (10)

... (11)

x̂m =  m(y1; : : : ; ym); (12)

where yi represents the score of the input vector with respect to the ith principal
component, and x̂i is the n- dimensional vector reconstructed by the ith reconstruction
function utilizing the representation of the original input vector x in the i-dimensional
principal component space.
The ith component of the extraction function �i and the ith reconstruction function

 i are paired in the following manner:

 1(x) =  1(�1(x)); (13)

 2(x) =  2(y1; �2(x)); (14)

... (15)

 m(x) =  m(y1; : : : ; ym−1; �m(x)): (16)

The functions of each pair are adjusted to minimize the mean square reconstruction
error in the above order. Therefore, yi can be regarded as the ith signi6cant nonlin-
ear principal component. In order to obtain the extraction functions {�i}i=1; ···;m and
the reconstruction functions { i}i=1; ···;m, we propose a hierarchical nonlinear principal
component network (HNPCN) composed of MLPs that are hierarchically arranged.
In the proposed method, we de6ne the order of the principal components as the order

to combine the principal components. The proposed method adjusts the parameters
of the kth nonlinear extraction function �k to perform the best expressor combined
with the upper nonlinear extraction functions �1; �2; : : : ; �k−1. Consequently, when we
choose a nonlinear extraction function from �k; �k+1; : : : ; �m for the function combining
with �1; �2; : : : ; �k−1, the expression ability of the kth function �k is the best function,
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Fig. 1. A sandglass-type MLP.

while the lower functions �k+1; �k+2; : : : ; �m are equal or less signi6cant from �k . The
order of �1; �2; : : : ; �k ; : : : ; �m corresponds to the best order to combine the principal
components for data expression.

2.3. The hierarchical nonlinear principal component network

The most sandglass-type MLPs for NLPCA are composed of 6ve layers as shown
in Fig. 1. The 6rst and the 6fth layers are the input and output layers, respectively. It
is expected that principal components will be extracted in the third layer provided that
the number of units in the third layer is less than the number of units in the 6rst layer.
The part from the 6rst layer to the third layer has the role of data extraction, while the
part from the third layer to the 6fth layer has the role of data reconstruction. It should
be noted that the number of principal components, which is the number of units in the
third layer, must be determined before the training and there are no di,erences in the
signi6cance among the third layer units in this type of NLPCA.
We propose a HNPCN composed of a number of independent sub-networks that can

extract ordered nonlinear principal components as explained in the previous section.
The number of sub-networks corresponds to the number of principal components to
be extracted. The number of layers in each sub-network is greater than 6ve, and the
number of input and output units are equally set to the size of the input vector’s
dimension, while the number of units in the middle layer (extraction layer) corresponds
to the index of the principal component extracted by the corresponding sub-network.
The structure of the model is shown in Fig. 2.
The activation function of the units in the input, output, and extraction layers is

f(u) = u; (17)

while the activation function of the units in the other layers is

f(u) =
1

1 + exp(−u=T ) : (18)

Each sub-network is trained to reconstruct an input vector x in its output layer by pro-
ducing x̂. As we want to extract the 6rst principal component in the 6rst sub-network,
we set one unit in its extraction layer. The output of this unit is the representation
point in the 6rst principal component of that input. The extraction layer of the second
sub-network receives the 6rst principal component of the input vector computed in the
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Fig. 2. Structure of HNPCN.

6rst sub-network and independently learns to generate a function that maps the input
layer into the second principal component. This action is hierarchically executed in
all of the sub-networks. It is obvious that the proposed model executes the nonlinear
principal component mapping explained in the previous section.
When n-dimensional data xp numbered p is given to the 6rst layer of the ith

sub-network, the ith unit in the extraction layer outputs one-dimensional data

ypi = �i(xp)∈R1; (19)

where the function �i is the ith component of the extraction function from xp onto a
principal component ypi . �i corresponds to the extraction part that is from all units in
the input layer to the ith unit of the extraction layer, while the principal components
yp1 ; y

p
2 ; : : : ; y

p
i−1 from all the upper sub-networks are fed to this layer.

The function  i is the ith reconstruction function from the principal components
yp1 ; y

p
2 ; : : : ; y

p
i onto the reconstructed data x̂pi .  i corresponds to the reconstruction part

that is from all units of the extraction layer to all units of the output layer.
The calculation of all outputs mentioned above is carried out in the increasing order

of the sub-network number. Each connection weight of the ith sub-network is then
adjusted in order to obtain an identical mapping by the criterion of the mean square
error

Epi = ‖xp − x̂pi ‖2: (20)

As for the input data xp, the additional correction Mwpi of a weight coe?cient wpi
is

Mwpi = −� @E
p
i

@wpi
(21)

that is adjusted by a back propagation algorithm. � is a constant learning parameter.
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The wpi of the ith sub-network is adjusted only inside the ith sub-network. Error
signals of the ith sub-network are not propagated into the extraction part of all upper
sub-networks. As a result, adjustment of the weight coe?cients in the ith sub-network
is dependent from the upper sub-networks to the lower ones. It is expected that this
dependency forces one to construct the lower extraction function to be di,erent from
any of the upper 1; 2; : : : ; (i− 1)th functions and to be e?cient to reconstruct the data.

3. Numerical experiments

We conducted some experiments to examine the e?ciency of the proposed method.
In this section we present two experimental results. In the 6rst experiment, we utilize
three-dimensional arti6cial data, the distribution of which is easy to understand. In the
second experiment, we utilize high-dimensional data that correspond to a waveform.

3.1. Experiment with three-dimensional arti9cial data

Training data and test data are the coordinates of points on a parabolic surface in a
three-dimensional Euclidean space given as follows:

x3 =
x21
a21

+
x22
a22

(22)

in which (x1; x2; x3)∈R3 and a1 = 1:0, a2 = 3:0.
The network in this experiment has two sub-networks. Each sub-network has 6ve

layers, where number of units in the 6rst and 6fth layers of each sub-network is three,
and the number in the second and fourth layers is 10. The parameters for the network
are set to �=0:05 and T=0:1. The number of training data is 20 000, randomly chosen
on the parabolic surface. The number of test data is 400 from lattice points on the
surface as shown in Fig. 3.
Fig. 4(a) shows the 6rst principal component, generated from the 6rst sub-network,

while Fig. 4(b) shows the second principal component generated from the second
sub-network without using the output of the unit in the third layer of the 6rst sub-network.

Fig. 3. Test data.
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Fig. 4. The reconstructed data from the 6rst principal component (a) and the second principal component
(b).

Fig. 5. Reconstructed data by the second sub-network.

From Eq. (22), the distribution of the data has the greatest variance along

x3 =
x22
32
; (23)

which corresponds to Fig. 4(a) and the second greatest variance is along

x3 = x21 ; (24)

which is 6nely reNected in Fig. 4(b).
Fig. 5 shows the reconstruction of the data from the second sub-network. It is obvious

from this experiment that the proposed model is able to extract the nonlinear principal
components from the nonlinearly distributed data.
Fig. 6 shows the principal component scores of the inputs. The horizontal axis

indicates the 6rst principal component score, while the vertical axis is for the second
principal component score.
Next, we constructed three principal components with three sub-networks in the

proposed network. The condition of the experiments is the same as that of the above
experiment except for the number of sub-networks. Table 1 shows the mean square
error (MSE) of each sub-network for 1000 test data points.
As shown in Table 1, the MSEs of the 6rst, second, and third sub-networks were

0:18319; 0:00473, and 0.00257, respectively. It is considered that the reconstruction
error is smaller when the number of available principal components is larger.



R. Saegusa et al. / Neurocomputing 61 (2004) 57–70 65

Fig. 6. A distribution of the 6rst and second principal component.

Table 1
MSEs of sub-networks

# Sub-network MSE Diminution of MSE

1st 0.18319 —
2nd 0.00473 0.17846
3rd 0.00257 0.00216

However, when we increased the number of a principal component from one to
two, the MSE decreased by 0.17846, but when we increased the number of principal
components from two to three, the MSE decreased by the small value of 0.00216. Since
the MSE is not much improved by the addition of the third principal component, we
can consider that it is su?cient to describe the data in this experiment by two principal
components, and the upper principal components have a higher ability to describe the
data than the lower components.
We also conducted the experiments with the above parabolic surface data embedded

in four, 6ve, and six dimensional space. In these high-dimensional cases, the network
could almost reconstruct the input data from two principal components as well as the
three-dimensional case.

3.2. Experiment with waveform data

In this experiment, the input is n-dimensional vectors, whose components are period-
ically sampled points of function that is a superposition of three sinusoidal functions.
The input vector can be written as follows:

(x1; x2; : : : ; xn) = (f(�+ �); f(2�+ �); : : : ; f(n�+ �)); (25)

f(s�+ �) =
3∑

k=1

ak sin(!k(s�+ �)) s= 1; 2; : : : ; n; (26)
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Fig. 7. Output wave of the 6rst sub-network.

Fig. 8. Output wave of the 6fth sub-network.

where the number of sampled points n = 100, the frequencies (!1; !2; !3)=(1:0; 2:0; 3:0),
the amplitudes (a1; a2; a3) = (0:5; 0:3; 0:2), and �= 2�=100. The initial phases � of the
training data are at random. The number of training data is 50,000. The number of
test data is 100. The number of sub-networks is 6ve and the number of layers is
seven through out this experiment. We enhanced the description ability of the net-
work by increasing one layer in the extraction part and the reconstruction part in each
sub-network. The number of units in the 6rst and seventh layers is 100, and the number
in the second, third, 6fth and sixth layers is 200. The parameters are set to �= 0:001
and T = 0:1.
In Figs. 7 and 8, we show the reconstructed data with the initial phases of � = 0

and �. The data are reconstructed from the test data by the trained network.
It is clear from Figs. 7 and 8 that the reconstructed wave of the 6fth sub-network that

used 6ve principal components is better than that of the 6rst sub-network that used only
one principal component. These results verify that although we do not have parameters
that correspond to the eigen value as in the conventional PCA, each sub-network
is able to extract one principal component while keeping their order. In Fig. 7, the
reconstructed data of the 6rst sub-network are similar to a sinusoidal wave. The 6rst
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Fig. 9. The principal components as to the initial phases.

extraction function seems to obtain the lowest-frequency sinusoidal function of f. The
6rst extraction function works most e?ciently to reconstruct the objective waveform
because the sinusoidal function has the largest amplitude.
Fig. 9 shows the form of the respective principal components. The 6gure shows

that the 6rst principal component is a low frequency component, and the frequency
gradually grows bigger in the latter principal components. This result is comparable
to the Fourier Series, but the proposed model has more independence of expressing
the principal components, therefore, it can be expected that the proposed method will
have a more e?cient principal component representation of some signals that cannot
be e?ciently expressed by Fourier Series, i.e., signals with discontinuity.

4. Discussion and conclusions

We proposed a method of nonlinear principal component analysis that preserves the
order of principal components with the hierarchical neural network model composed of
a number of MLPs. In some numerical experiments, we demonstrated that the proposed
network constructs the extraction functions in order of the reconstruction e?ciency as
to the objective data. We also con6rmed that the network obtains the e,ective and
signi6cant functions for high-dimensional data.
The proposed model has a high independence in generating a function (extraction

function) to map input vectors into their corresponding vectors in the principal com-
ponent space, while at the same time, the model is also able to build a reconstruction
function that maps the points in the principal component space into the original input
space. The forms of the extraction and the reconstruction functions are determined by
a number of factors, such as the structure of the sub-networks, the initial condition of
each sub-network and the learning algorithm.
We also examined the robustness of the proposed model with respect to the initial

condition of the sub-networks with di,erent structures. This is done with the same data
as in Section 3.1.
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Fig. 10. The mean square errors with various numbers of units in the second and fourth layers.

Fig. 11. The mean square errors with various numbers of units in the second layer by 6xing the number in
the fourth layer at 15 (a), and the mean square errors with various numbers of units in the fourth layer by
6xing the number in the second layer at 15 (b).

Fig. 10 shows the learning MSE of the model, regarding sub-networks with a dif-
ferent number of units in the second and the fourth layers. Sub-networks with a
greater number of units in the second and the fourth layers have better mapping
abilities.
We also examined the performance of the proposed model by setting di,erent num-

bers of units for the second and fourth layers. In Fig. 11(a), the number of units in the
fourth layer is 6xed at 15, while the number of units in the second layer varies. On
the other hand, in Fig. 11(b), the number of units in the second layer is 6xed at 15,
while the number of units in the fourth layer varies. From Fig. 11, we can draw the
conclusion that the extraction function is valued more than the reconstruction function
in this mode. The reason is that a “weak” extraction function will fail to provide a
good representation of input vectors in the principal component space, so the recon-
structed vectors will not be precise even if the reconstruction function’s performance
is strong.
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Although we do not have any explicit parameter that corresponds to the ratio of the
contributions as in the conventional PCA, the learning error of each sub-network can
be loosely used as a guidance in determining the cumulative ratio of contribution from
all the sub-networks.
In regard to the constructed nonlinear principal components, the limitation of the

data description ability is considered to depend on the structure of the sub-networks
in the proposed model. If the structure is changed, the maximum description ability of
the principal components will change.
In the proposed method, the sub-networks are trained until the mean square error

converges so that the obtained nonlinear principal components are expected to have
the best performance in the given network structure.
The promising applications that we will consider in the near future, encompasses

nonlinear pattern classi6cations, nonlinear data compressions, etc.
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